This study describes a prediction method of a supply flow rate of axial cooling fans mounted in high-density packaging electronic equipment. The performance of an air-cooling fan is defined by its PQ (pressure difference – flow rate) curve. Generally the operating point of a fan, which is the operating pressure and the flow rate in equipment, is the point of intersection of a PQ curve and a flow resistance curve. Recently, some researchers reported that catalogue PQ curves have not necessarily been able to predict a correct supply flow rate in thermal design of high-density packaging equipment. Our study aims to improve prediction accuracy of the supply flow rate. In this report, a relationship between the PQ curve and a pressure drop characteristic in a fan-mounted enclosure was investigated. A test enclosure which includes an obstruction was mounted in front of a test fan and the supply flow rate of the fan was measured while changing the obstruction. Additionally the flow resistance curves in the test enclosure were measured and the relationship among the supply flow rate, the PQ curve and the flow resistance curve was investigated. It is found that the correct supply flow rate can be obtained by using the flow resistance from the enclosure inlet through the fan outlet and the revised PQ curve which is made compensation for the pressure drop at the inlet and the outlet of the fan.

This content is only available via PDF.
You do not currently have access to this content.