A numerical model of the thermoreflectance of doped SiC substrate and typical numerical results are presented. The model considers the temporal response of the electron temperature and the number density of the electronic carriers. Calculated results show steep increase of electron temperature and the resulting increase of reflectivity. As a result, the reflected laser pulse by the substrate is compressed in time domain by means of the temporal response of the thermoreflectance characteristics of SiC substrate. Thermal analysis of the electrons reveals the interesting feature of the thermoreflectance response as a function of pulse intensity, pulse width, or doping concentration. The technique can be used for the compression of ultrashort pulse laser light.

This content is only available via PDF.
You do not currently have access to this content.