Polymer encapsulants exhibit evolving properties that change significantly with environmental exposures such as moisture uptake, isothermal aging and thermal cycling. In this study, the effects of moisture adsorption on the stress-strain behavior of a polymer encapsulant were evaluated experimentally. The uniaxial test specimens were exposed in an adjustable thermal and humidity chamber to combined hygrothermal exposures at 85 °C/85% RH for various durations. After moisture preconditioning, a microscale tension-torsion testing machine was used to evaluate the complete stress-strain behavior of the material at several temperatures. It was found that moisture exposure caused plasticization and strongly reduced the mechanical properties of the encapsulant including the initial elastic modulus and ultimate tensile stress. Reversibility tests were also conducted to evaluate whether the degradations in the mechanical properties were recoverable. Upon fully redrying, the polymer was found to recover most but not all of its original mechanical properties. As revealed by FTIR, some of the adsorbed water had been hydrolyzed in the organic structure of the epoxy-based adhesive, causing permanent changes to the mechanical behavior.

This content is only available via PDF.
You do not currently have access to this content.