This paper reports the mechanical properties of single crystal silicon surface changed with hydrogen atoms trapped by underwater boiling treatment. Nanoindentaion test using a Berkovich indenter in six different indentation loads ranging from 100 μN to 1000 μN was conducted to obtain the load-displacement curve. The energy dissipated in plastic deformation, i.e. plasticity energy, during indentation on silicon wafers with different carrier concentration (undoped, lightly and heavily boron doped silicon) were compared. After boiling treatment, increment in the plasticity energy was observed on silicon containing boron. This result suggests that hydrogen atoms trapped inside silicon enhanced dislocation mobility leading to larger plastic deformation.

This content is only available via PDF.
You do not currently have access to this content.