A number of small electronic devices benefit from micro-scale low temperature operation. Recently we have developed micro cryogenic coolers (MCCs) using a low-pressure, mixed-refrigerant Joule-Thomson cycle. The cryocoolers utilizes a MEMS-enabled gas compressor coupled to a micro cold stage. Two cold stages have been developed: one which uses a fiber-enabled heat exchanger assembled to a micro-machined throttling valve, and another which uses a MEMS-based heat exchanger. A microcompressor has been developed which uses MEMS-based check valves coupled to a membrane, which is actuated with a mechanically amplified piezoelectric amplifier. The compressor measures a volume 15 mL, can generate a pressure ratio of 6:1 and a maximum flow-rate of 60 standard mL/min. The complete cryocooler has reached low temperatures of 177 K, although temperature instability has been an issue, due to 2-phase flow through the micro-channels. This paper will cover the development and testing of the micro cryogenic cooler, as well as an analysis of the micro channel flow. A proper understanding of the micro-channel flow allows us to design refrigerant mixtures to improve the cooling power, and modify the cooler to eliminate temperature instabilities.

This content is only available via PDF.
You do not currently have access to this content.