Four-wire resistance characterization of van der Pauw stress sensors is discussed. Under the proper orientations and excitations, the output of the four-contact sensors can be shown to depend upon only the in-plane shear stress or the in-plane normal stress difference on (100) silicon. The other stress terms are cancelled out by the symmetry of the structure, and the measurements are inherently temperature compensated. In bridge-mode, each sensor requires only one measurement and produces an output voltage that is directly proportional to the shear stress or in-plane normal stress difference, and the sensitivity is 3.16 times that of the equivalent resistor sensors, just as in the normal van der Pauw mode. Experimental, theoretical, finite-difference and finite-element and simulation results are presented demonstrating the behavior of the sensor. The two sensors can be merged into one eight-contact device, or n- and p-tye sensors can be overlaid in standard IC processes. Similar results apply to sensors on (111) silicon.

This content is only available via PDF.
You do not currently have access to this content.