Escalation of the expense of gold has resulted in industry interest in use of copper as alternative wire bonds interconnect material. Copper wire has the advantage of lower price and comparable electrical resistance to gold wire. In this paper, 32-pin copper-aluminum wire bond chip scale packages are aged at three types of environment conditions separately. Environmental conditions included: 200°C for 10 days, 85°C and 85% RH for 8 weeks and −40°C to 125°C for 500 thermal cycles. The resistances of the wire bond are obtained every 24 hours for 200°C environment, every 7 days for 85C/85RH environment and every 5 days (50 thermal cycles) for the thermal cycling environment. A leading indicator has been developed in order to monitor the progression effect of the different thermal aging condition on the package and prognosticate remaining useful life based on the resistance spectroscopy. The Cu-Al wire bond resistance has been measured using a modified Wheatstone bridge. It has been shown previously that precise resistance spectroscopy is able to offer the failure of a leading indicator prior to the traditional definition of failure. The prognostic health management is qualified to be an efficient and accuracy tool for assessment of the remaining life of the wire bond. The ability to predict the remaining useful life of Cu-Al wire bond provides several advantages, including increasing safety by providing warning ahead of time before the failure.

This content is only available via PDF.
You do not currently have access to this content.