Glass is widely used as cover glass to protect the smartphones, tablets, PCs, and TVs from everyday wear and tear nowadays. There has been an increasing effort to understand the global behavior of glass substrate under impact, but the behavior of the edge for the thin glass has rarely been touched. In this study, the dynamic response of the glass edge when impacted with 1.75-inch steel ball from different heights (different potential energy) and different angles is studied. High-speed camera is applied for the direct visualization of the whole impact process. The Digital Image Correlation (DIC) method enables to obtain displacements (in-plane displacement and out-of-plane displacement) of the glass during the impact process. The failure mode for the edge impact is found to be predominantly buckling. The tape used in this study decreases wave propagation from the impact location. In addition, the FEA model of edge impact test is developed in ANSYS/LS-DYNA™.

This content is only available via PDF.
You do not currently have access to this content.