The power density requirements continue to increase and the ability of thermal interface materials has not kept pace. Increasing effective thermal conductivity and reducing bondline thickness reduce thermal resistance. High thermal conductivity materials, such as solders, have been used as thermal interface materials. However, there is a limit to minimum bondline thickness in reducing resistance due to increased fatigue stress. A compliant thermal interface material is proposed that allows for thin solder bondlines using a compliant structure within the bondline to achieve thermal resistance <0.01 cm2C/W. The structure uses an array of nanosprings sandwiched between two plates of materials to match thermal expansion of their respective interface materials (ex. silicon and copper). Thin solder bondlines between these mating surfaces and high thermal conductivity of the nanospring layer results in thermal resistance of 0.01 cm2C/W. The compliance of the nanospring layer is two orders of magnitude more compliant than the solder layers so thermal stresses are carried by the nanosprings rather than the solder layers. The fabrication process and performance testing performed on the material is presented.

This content is only available via PDF.
You do not currently have access to this content.