Electronic systems under extreme shock and vibration environments including shock and vibration may sustain several failure modes simultaneously. Previous experience of the authors indicates that the dominant failure modes experienced by packages in a drop and shock frame work are in the solder interconnects including cracks at the package and the board interface, pad cratering, copper trace fatigue, and bulk-failure in the solder joint. In this paper, a method has been presented for failure mode classification using a combination of Karhunen Loe´ve transform with parity-based stepwise supervised training of a perceptrons. Early classification of multiple failure modes in the pre-failure space using supervised neural networks in conjunction with Karhunen Loe´ve transform is new. Feature space has been formed by joint time frequency analysis. Since the cumulative damage may be accrued under repetitive loading with exposure to multiple shock events, the area array assemblies have been exposed to shock and feature vectors constructed to track damage initiation and progression. Error Back propagation learning algorithm has been used for stepwise parity of each particular failure mode. The classified failure modes and failure regions belonging to each particular failure modes in the feature space are also validated by simulation of the designed neural network used for parity of feature space. Statistical similarity and validation of different classified dominant failure modes is performed by multivariate analysis of variance and Hoteling’s T-square. The results of different classified dominant failure modes are also correlated with the experimental cross sections of the failed test assemblies. The methodology adopted in this paper can perform real-time fault monitoring with identification of specific dominant failure mode and is scalable to system level reliability.
Skip Nav Destination
ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
July 6–8, 2011
Portland, Oregon, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4461-8
PROCEEDINGS PAPER
KL Transform and Neural-Net Based Framework for Failure Modes Classification in Electronics Subjected to Mechanical-Shock
Prashant Gupta,
Prashant Gupta
Auburn University, Auburn, AL
Search for other works by this author on:
Kai Goebel
Kai Goebel
NASA Ames Research Center, Moffett Field, CA
Search for other works by this author on:
Pradeep Lall
Auburn University, Auburn, AL
Prashant Gupta
Auburn University, Auburn, AL
Kai Goebel
NASA Ames Research Center, Moffett Field, CA
Paper No:
IPACK2011-52198, pp. 563-578; 16 pages
Published Online:
February 14, 2012
Citation
Lall, P, Gupta, P, & Goebel, K. "KL Transform and Neural-Net Based Framework for Failure Modes Classification in Electronics Subjected to Mechanical-Shock." Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1. Portland, Oregon, USA. July 6–8, 2011. pp. 563-578. ASME. https://doi.org/10.1115/IPACK2011-52198
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
On Failure Mechanisms in Flip Chip Assembly—Part 1: Short-Time Scale Wave Motion
J. Electron. Packag (June,2008)
Vibration-Induced Failures in Automotive Electronics: Knowledge-Based Qualification Perspective
J. Electron. Packag (June,2018)
Special Section on InterPACK 2013
J. Electron. Packag (December,2014)
Related Chapters
A Novel Approach for LFC and AVR of an Autonomous Power Generating System
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
An Energy Efficient Hybrid Code Combining Technique for Cluster-Based Cooperative Wireless Networks
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)