Microprocessor packaging in modern workstations and servers often consists of one or more large flip chip die that are mounted to a high performance ceramic chip carrier. The final assembly configuration features a complex stack up of flip chip area array solder interconnects, underfill, ceramic substrate, lid, heat sink, thermal interface materials, second level CBGA solder joints, organic PCB, etc., so that a very complicated set of loads is transmitted to the microprocessor chip. Several trends in the evolution of this packaging architecture have exacerbated die stress levels including the transition to larger die, high CTE ceramic substrates, lead free solder joints, higher levels of power generation, and larger heat sinks with increased clamping forces. Die stress effects are of concern due to several reasons including degradation of silicon device performance (mobility/speed), damage that can occur to the copper/low-k top level interconnect layers, and potential mechanical failure of the silicon in extreme cases. In this work, we have used test chips containing piezoresistive sensors to measure the buildup of mechanical stresses in a microprocessor die after various steps of the CBGA assembly process, as well as due to heat sink clamping. The developed normal stresses are compressive (triaxial compression) across the die surface, with significant in-plane and out-of-plane (interfacial) shear stresses also present at the die corners. The compressive stresses have been found to increase with each assembly step (flip chip solder joint reflow, underfill dispense and cure, lid attachment, CBGA assembly to PCB, and heat sink clamping). Levels exceeding 500 MPa have been observed for extremely high heat sink clamping forces. The utilized (111) silicon test chips were able to measure the complete three-dimensional stress state (all 6 stress components) at each sensor site being monitored by the data acquisition hardware. The test chips had dimensions of 20 × 20 mm, and 3600 lead free solder interconnects (full area array) were used to connect the chips to the high CTE ceramic chip carriers. Before packaging, the sensor resistances were measured by directly probing the individual test chip wafers. The chips were then diced, reflowed to the ceramic substrate, and then underfilled and cured. A metallic lid and second level solder balls were attached to complete the flip chip ceramic BGA components. After every packaging step (flip chip solder ball reflow, underfill dispense and cure, lid attachment and adhesive cure), the sensor resistances were re-measured, so that the die stresses induced by each assembly operation could be characterized. Finally, CBGAs with the stress sensing chips were soldered to organic PCB test boards. A simulated heat sink loading was then applied, and the stresses were measured as a function of the clamping force. The heat sink clamping pressure distribution was monitored using in-situ resistive sensors in the TIM2 position between the lid and heat sink. The measured stress changes due to heat sink clamping where correlated with finite element simulations. With suitable detail in the models, excellent correlation has been obtained.
Skip Nav Destination
ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems
July 6–8, 2011
Portland, Oregon, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4461-8
PROCEEDINGS PAPER
Characterization of Die Stresses in CBGA Packages due to Component Assembly and Heat Sink Clamping
Jordan C. Roberts,
Jordan C. Roberts
Auburn University, Auburn, AL
Search for other works by this author on:
Mohammad Motalab,
Mohammad Motalab
Auburn University, Auburn, AL
Search for other works by this author on:
Safina Hussain,
Safina Hussain
Auburn University, Auburn, AL
Search for other works by this author on:
Jeffrey C. Suhling,
Jeffrey C. Suhling
Auburn University, Auburn, AL
Search for other works by this author on:
Richard C. Jaeger,
Richard C. Jaeger
Auburn University, Auburn, AL
Search for other works by this author on:
Pradeep Lall
Pradeep Lall
Auburn University, Auburn, AL
Search for other works by this author on:
Jordan C. Roberts
Auburn University, Auburn, AL
Mohammad Motalab
Auburn University, Auburn, AL
Safina Hussain
Auburn University, Auburn, AL
Jeffrey C. Suhling
Auburn University, Auburn, AL
Richard C. Jaeger
Auburn University, Auburn, AL
Pradeep Lall
Auburn University, Auburn, AL
Paper No:
IPACK2011-52185, pp. 493-506; 14 pages
Published Online:
February 14, 2012
Citation
Roberts, JC, Motalab, M, Hussain, S, Suhling, JC, Jaeger, RC, & Lall, P. "Characterization of Die Stresses in CBGA Packages due to Component Assembly and Heat Sink Clamping." Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 1. Portland, Oregon, USA. July 6–8, 2011. pp. 493-506. ASME. https://doi.org/10.1115/IPACK2011-52185
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Characterization of Compressive Die Stresses in CBGA Microprocessor Packaging Due to Component Assembly and Heat Sink Clamping
J. Electron. Packag (September,2012)
Thermal Interfacing Techniques for Electronic Equipment—A Perspective
J. Electron. Packag (June,2003)
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
J. Heat Transfer (November,1998)
Related Chapters
The Latest Hot CD
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Quality Control for the Manufacture of Child-Resistant Closures
Child-Resistant Packaging