The heat rejection device is a key component in virtually all electronic systems. New core materials for compact and efficient heat exchangers or heat rejection devices are contemporary porous media including metal and graphite foam. In such materials the solid phase has a relatively high conductivity, especially when the fluid phase has a low conductivity. This condition is realized in air-cooling thermal management systems. Simple models are needed for scientists and engineers who work with these materials. Approximate engineering analysis for the convection heat transfer inside a two-dimensional rectangular porous media subjected to constant heat flux on one side is presented. The analysis sets the conduction in the fluid’s governing equation to zero, and for simplicity assumes Darcian flow. The Darcian flow assumption is valid far enough from the solid boundaries, ant it prevails for most of the cross section. The non-local-thermal equilibrium equations are significantly simplified and solved. The solid and fluid temperatures decay in what looks like an exponential fashion as the distance from the heated base increases. The results are in good qualitative agreement with more complex analytical and numerical results in the literature. The proposed model may prove to be time-savings for design purposes.
Skip Nav Destination
ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4360-4
PROCEEDINGS PAPER
Approximate Analysis for Darcy-Flow Convection in Porous Media With Zero Fluid Conduction
Nihad Dukhan
Nihad Dukhan
University of Detroit Mercy, Detroit, MI
Search for other works by this author on:
Nihad Dukhan
University of Detroit Mercy, Detroit, MI
Paper No:
InterPACK2009-89231, pp. 881-886; 6 pages
Published Online:
December 24, 2010
Citation
Dukhan, N. "Approximate Analysis for Darcy-Flow Convection in Porous Media With Zero Fluid Conduction." Proceedings of the ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASME 2009 InterPACK Conference, Volume 2. San Francisco, California, USA. July 19–23, 2009. pp. 881-886. ASME. https://doi.org/10.1115/InterPACK2009-89231
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Developing Nonthermal-Equilibrium Convection in Porous Media With Negligible Fluid Conduction
J. Heat Transfer (January,2009)
Extended Results for Fully Developed Laminar Forced Convection Heat Transfer in Trapezoidal Channels of Plate-Fin Exchangers
J. Thermal Sci. Eng. Appl (December,2010)
Three-Dimensional Conjugate Heat Transfer in a Horizontal Channel
With Discrete Heating
J. Heat Transfer (August,2004)
Related Chapters
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine
Handy Facts Regarding Types of Thermal Insulation
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1
Experimental Investigation of an Improved Thermal Response Test Equipment for Ground Source Heat Pump Systems
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)