The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of 10 parallel, 25.4 mm long channels with nominal dimensions of 500 μm × 500 μm. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average, Ra, varied from 1.4 μm for the as-fabricated, saw-cut surface to 3.9 and 6.7 μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. Experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500 kW/m2, the two EDM surfaces (3.9 and 6.7 μm) have similar heat transfer coefficients that were 20 to 35% higher than those measured for the saw cut surface (1.4 μm). Analysis of the pressure drop measurements indicates that only the roughest surface (6.7 μm) has an adverse effect on the two-phase pressure drop.
Skip Nav Destination
ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4360-4
PROCEEDINGS PAPER
Surface Roughness Effects on Flow Boiling in Microchannels
Benjamin J. Jones,
Benjamin J. Jones
Purdue University, West Lafayette, IN
Search for other works by this author on:
Suresh V. Garimella
Suresh V. Garimella
Purdue University, West Lafayette, IN
Search for other works by this author on:
Benjamin J. Jones
Purdue University, West Lafayette, IN
Suresh V. Garimella
Purdue University, West Lafayette, IN
Paper No:
InterPACK2009-89168, pp. 409-418; 10 pages
Published Online:
December 24, 2010
Citation
Jones, BJ, & Garimella, SV. "Surface Roughness Effects on Flow Boiling in Microchannels." Proceedings of the ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASME 2009 InterPACK Conference, Volume 2. San Francisco, California, USA. July 19–23, 2009. pp. 409-418. ASME. https://doi.org/10.1115/InterPACK2009-89168
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Surface Roughness Effects on Flow Boiling in Microchannels
J. Thermal Sci. Eng. Appl (December,2009)
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
J. Heat Transfer (December,2009)
Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink
J. Electron. Packag (December,2006)
Related Chapters
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Experiment Investigation of Flow Boiling Process Including Cavitation in Micro-Channel
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Introduction
Thermal Management of Microelectronic Equipment