Particle laden Thermal Interface Materials (TIMs) are used extensively in thermal packaging of electronic components to enhance the heat transfer between heat dissipating components and the thermal management layers. In this paper, the thermal performance of particle laden TIMs is studied numerically, using the Lattice Boltzmann method. The effect of particle volume fraction, particle size and the thermal conductivity ratio on the thermal performance of particle laden TIMs are examined. The results for the effective thermal conductivity of particle laden greases are in agreement with the existing analytical and experimental results reported in the literature.
Volume Subject Area:
Modeling and Simulation
This content is only available via PDF.
Copyright © 2009
by ASME
You do not currently have access to this content.