An extensive 3-D conjugate numerical study is conducted to assess the thermal performance of power packages for automotive applications. The automotive industry deals on a daily basis with various package and module-level thermal issues when managing the routing of very high current. The study provides a better understanding of the strengths and weaknesses of IC incorporation into a system module, for present and future product development. Several packages are investigated, ranging from smaller die/flag size to larger ones, single or multiple heat sources, operating under various powering and boundary conditions. The steady state and transient thermal impact of the thicker lead frame and die attach material on the overall thermal behavior is evaluated. The main concern is exceeding the thermal budget at an external ambient temperature of 85°C, specific for the relatively extreme automotive operating environments. Under one steady state (1W) operating scenario, the PQFN package reaches a peak temperature of ∼106.3°C, while under 37W@40ms of transient powering, the peak temperature reached by the corner FET is ∼260.8°C. With an isothermal boundary (85°C) attached to the board backside, the junction temperature does not change, as the PCB has no significant thermal impact. When the isothermal boundary is attached to package bottom, peak temperature drops by 20% after 40 ms. Additional system level with multiple optimized packages placed on a custom PCB is evaluated numerically and experimentally, placing an emphasis on the superior thermal performance of this new class of power packages for automotive applications. The optimized numerical model approximates closely the empirical results (121–126°C vs. 127.5°C), within 1–2%.

This content is only available via PDF.
You do not currently have access to this content.