Understanding the transport mechanisms involved in a single droplet impinging on a heated surface is imperative to the complete understanding of droplet and spray cooling. Evidence in the literature shows that gas assisted droplet sprays and mist flows are more efficient than sprays consisting only of liquid droplets. In both cases, understanding the transport physics due to the heat transfer from the surface to the droplet and then by convection and evaporation to the airflow is of fundamental importance. The current work focuses on the behavior of a single droplet as it is propelled to the target by a gas jet impinging on a heated surface. The study is restricted to the single-phase regime. High-speed photography was used to capture the droplet dynamics, including the droplet spreading and receding processes, over a range of jet Reynolds numbers. The instantaneous heat transfer coefficient from the surface to the liquid droplet was measured using a heated foil technique with a constant surface heat flux. It was found that the gas jet contributes to an increase in the maximum spreading diameter and in the instantaneous heat transfer coefficient, compared to a free falling droplet impinging onto a surface. The instantaneous, maximum heat transfer coefficient is achieved at intermediate times, apparently when an optimum liquid film thickness is achieved.
Skip Nav Destination
ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4360-4
PROCEEDINGS PAPER
Experiments and Modeling of a Liquid Droplet Transported by a Gas Stream Impinging on a Heated Surface: Single Phase Regime
Ryan P. Anderson,
Ryan P. Anderson
Villanova University, Villanova, PA
Search for other works by this author on:
Alfonso Ortega
Alfonso Ortega
Villanova University, Villanova, PA
Search for other works by this author on:
Ryan P. Anderson
Villanova University, Villanova, PA
Alfonso Ortega
Villanova University, Villanova, PA
Paper No:
InterPACK2009-89020, pp. 229-237; 9 pages
Published Online:
December 24, 2010
Citation
Anderson, RP, & Ortega, A. "Experiments and Modeling of a Liquid Droplet Transported by a Gas Stream Impinging on a Heated Surface: Single Phase Regime." Proceedings of the ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASME 2009 InterPACK Conference, Volume 2. San Francisco, California, USA. July 19–23, 2009. pp. 229-237. ASME. https://doi.org/10.1115/InterPACK2009-89020
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics
J. Heat Transfer (January,2005)
Performance of Horizontal Smooth Tube Absorber With and Without 2-Ethyl-Hexanol
J. Heat Transfer (February,2002)
Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces
J. Heat Transfer (February,2003)
Related Chapters
Numerical Simulation of Nucleate Spray Cooling: Effect of Droplet Impact on Bubble Growth and Heat Transfer in a Thin Liquid Film
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries