Thermal stresses developed in electronic systems mainly depend, not only on average temperature values, but rather on wall temperature profiles. These profiles are difficult to predict unless one uses detailed finite element or finite difference modeling and simulation techniques. This type of analysis is only suitable at final design phases were geometrical details are available or being finalized. It is not suitable at early design phases to get a rapid estimate of wall thermal gradients to orient design appropriately. Standard approaches involving correlations for the heat transfer coefficient fail to predict temperature profiles for many reasons. In fact, these correlations depend on temperature profile as an input. In most engineering applications, walls are neither infinitely conducting nor of negligible conductivity to justify the usage of either uniform temperature or uniform heat flux assumptions. Correlations addressing conjugate heat transfer would not be able to solve the problem, unless a large number of them were available covering all possible combinations of fluid and wall conditions. Besides, the case of multiple heat sources, quite common in modern systems, can never be correctly handled by such an approach. The flexible profile technology was proposed earlier to model heat transfer in either solids (conduction) or fluids (forced convection. The model depends on domain (fluid or solid) geometry and physical properties, regardless of the particular set of applied boundary conditions, including that of multiple heat sources. Combining a fluid flexible profile model with a solid one, will allow predicting wall temperature profiles, with an adjustable level of precision, depending on the number of degrees of freedom retained. It will be applied in this paper to predict thermally induced stresses in some simple test cases as a demonstrator of the potentials behind this approach.
Skip Nav Destination
ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability
July 19–23, 2009
San Francisco, California, USA
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
978-0-7918-4359-8
PROCEEDINGS PAPER
Predicting Thermal Stresses Induced by Conjugate Heat Transfer
Mohamed-Nabil Sabry
Mohamed-Nabil Sabry
French University in Egypt, Cairo, Egypt
Search for other works by this author on:
Mohamed-Nabil Sabry
French University in Egypt, Cairo, Egypt
Paper No:
InterPACK2009-89415, pp. 187-191; 5 pages
Published Online:
December 24, 2010
Citation
Sabry, M. "Predicting Thermal Stresses Induced by Conjugate Heat Transfer." Proceedings of the ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASME 2009 InterPACK Conference, Volume 1. San Francisco, California, USA. July 19–23, 2009. pp. 187-191. ASME. https://doi.org/10.1115/InterPACK2009-89415
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
On the Use of Point Source Solutions for Forced Air Cooling of Electronic Components—Part II: Conjugate Forced Convection From a Discrete Rectangular Source on a Thin Conducting Plate
J. Electron. Packag (June,2003)
Generalization of the Heat Transfer Coefficient Concept for System Simulation
J. Heat Transfer (June,2011)
Conjugated Periodic Turbulent Forced Convection in a Parallel Plate Channel
J. Heat Transfer (February,1994)
Related Chapters
Contamination and Impacts of Exploration and Production Waste Constituents
Guidebook for Waste and Soil Remediation: For Nonhazardous Petroleum and Salt Contaminated Sites
Generating Synthetic Electrocardiogram Signals Withcontrolled Temporal and Spectral Characteristics
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
Completing the Picture
Air Engines: The History, Science, and Reality of the Perfect Engine