A nanoscale calorimeter design based on temperature induced changes in a surface plasmon based photonics effect has the potential to decrease the mass of experimental compounds consumed and to increase the throughput of experiments investigating drug development. This calorimeter is based on a demonstrated surface plasmon biosensor in which index of refraction changes as small as 10−5 % caused by biochemical reactions on the sensor surface are detected. To achieve this sensitivity require that the device’s temperature be held constant to within ± 0.001 K. In the biosensor the temperature was held constant to measure the concentration changes. For the calorimeter the concentration is held constant and temperature changes are monitored. In the calorimeter design the nanohole array sensor will be used as a sensitive thermometer that will be used to determine the enthalpy of binding, equilibrium binding constant and entropy changes of biochemical reactions. The numerical analysis described in this work demonstrates that nanoscale calorimetry is possible. The simulations demonstrate that two designs can produce temperature rises of 5.5 and 40 C, respectively well above the (10−3) C resolution of the sensors. These results were obtained using less than three orders of magnitude less reactants than is currently being used in calorimetry studies which is a significant advance of this technology.
Skip Nav Destination
ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4278-9
PROCEEDINGS PAPER
Thermal Management Design of a Nanoscale Biocalorimeter
Gregory J. Kowalski,
Gregory J. Kowalski
Northeastern University, Boston, MA
Search for other works by this author on:
Amir Talakoub,
Amir Talakoub
Northeastern University, Boston, MA
Search for other works by this author on:
Dale Larson
Dale Larson
Harvard Medical School, Boston, MA
Search for other works by this author on:
Gregory J. Kowalski
Northeastern University, Boston, MA
Amir Talakoub
Northeastern University, Boston, MA
Dale Larson
Harvard Medical School, Boston, MA
Paper No:
IPACK2007-33404, pp. 939-946; 8 pages
Published Online:
January 8, 2010
Citation
Kowalski, GJ, Talakoub, A, & Larson, D. "Thermal Management Design of a Nanoscale Biocalorimeter." Proceedings of the ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASME 2007 InterPACK Conference, Volume 2. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 939-946. ASME. https://doi.org/10.1115/IPACK2007-33404
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Rapid and Accurate Calculation of Water and Steam Properties Using the Tabular Taylor Series Expansion Method
J. Eng. Gas Turbines Power (July,2001)
Supplementary Backward Equations T ( p , h ) , v ( p , h ) , and T ( p , s ) , v ( p , s ) for the Critical and Supercritical Regions (Region 3) of the Industrial Formulation IAPWS-IF97 for Water and Steam
J. Eng. Gas Turbines Power (January,2007)
Supplementary Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the Industrial Formulation IAPWS-IF97 for Water and Steam
J. Eng. Gas Turbines Power (July,2006)
Related Chapters
Introduction
Bacteriophage T4 Tail Fibers as a Basis for Structured Assemblies
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Characterization and evaluation
Biocompatible Nanomaterials for Targeted and Controlled Delivery of Biomacromolecules