The effective thermal conductivity of three dimensional (3-D) nanocomposites composed of carbon nanotube (CNT) dispersions is computed using Fourier conduction theory. The random ensemble of nanotubes is generated numerically and each nanotube is discretized using a finite volume scheme. The background substrate mesh is also discretized using a finite volume scheme. We incorporate all parameters crucial for thermal transport studies, i.e. tube aspect ratio, tube density, composite sample size, substrate-CNT conductivity ratio and the interfacial resistance due to tube-tube and tube-substrate contact. Two-dimensional (thin film) nanocomposites are also simulated for comparison. Numerical predictions of effective thermal conductivity are in excellent agreement with the effective medium approximation (EMA) for both 2-D and 3-D nanocomposites at low tube densities, but depart significantly from EMA predictions when tube-tube interaction becomes significant. It is found that the effect of tube-tube contact on effective thermal conductivity is more significant for 2-D composites than 3-D composites. Hence percolation effects may play a more significant role in thermal transport in 2-D nano-composites.
Skip Nav Destination
ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4278-9
PROCEEDINGS PAPER
Numerical Model for Thermal Transport in 3-D Nanotube Composites
Satish Kumar,
Satish Kumar
Purdue University, West Lafayette, IN
Search for other works by this author on:
Jayathi Y. Murthy
Jayathi Y. Murthy
Purdue University, West Lafayette, IN
Search for other works by this author on:
Satish Kumar
Purdue University, West Lafayette, IN
Jayathi Y. Murthy
Purdue University, West Lafayette, IN
Paper No:
IPACK2007-33296, pp. 773-781; 9 pages
Published Online:
January 8, 2010
Citation
Kumar, S, & Murthy, JY. "Numerical Model for Thermal Transport in 3-D Nanotube Composites." Proceedings of the ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASME 2007 InterPACK Conference, Volume 2. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 773-781. ASME. https://doi.org/10.1115/IPACK2007-33296
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube–Polymer Composites
J. Heat Transfer (January,2014)
Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics
J. Heat Transfer (April,2007)
A Micromechanics Model for the Thermal Conductivity of Nanotube-Polymer Nanocomposites
J. Appl. Mech (July,2008)
Related Chapters
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Tensile Behavior of CNT-CF/PP Composite Obtained from Experimental and Numerical Modeling Methods
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Layer Arrangement Impact on the Electromechanical Performance of a Five-Layer Multifunctional Smart Sandwich Plate
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation