This paper presents an experimental study and theoretical interpretation of two-phase flow in a closed loop. The objective of this work is to find the optimum flow rate with respect to the thermal design power (amount of heat to be rejected). We assume that forced-convection boiling characteristics are explained based on mass and energy conservation, and claim that our proposed coefficient (C ≡ QL / Q : a ratio of amount of evaporated liquid to the flow rate) indicates the optimum flow rate for wide variation of evaporator-shapes and working fluids. In order to verify our model, we have measured the thermal resistance of evaporator with respect to heater input power for various flow rates. Hydrofluoro ether (HFE) and Fluorinert™ refrigerants were used as the working fluid in the experiment. Here flow rate of 40∼120ml/min and thermal design power of 50∼200W were controlled by the pump and by the heater, respectively. We observed that the coefficient resulted in the optimum flow rate is almost the same regardless of working fluids and evaporator shapes. The data which indicates the optimum flow rate were quite well reproduced by our proposed theory when the value of this coefficient is C ≈ 0.7∼0.95. For the demonstration, we designed the assembled-type two-phase cooling module with the optimum flow rate based on our model, and we observed that the evaporator had a relatively small thermal resistance of 0.1K/W.
Skip Nav Destination
ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Electronic and Photonic Packaging Division
ISBN:
0-7918-4278-9
PROCEEDINGS PAPER
Forced-Convection Boiling Characteristics Based on Mass and Energy Conservation
Keisuke Horiuchi,
Keisuke Horiuchi
Hitachi Ltd., Hitachinaka, Ibaraki, Japan
Search for other works by this author on:
Shigeo Ohashi
Shigeo Ohashi
Hitachi Ltd., Hitachinaka, Ibaraki, Japan
Search for other works by this author on:
Keisuke Horiuchi
Hitachi Ltd., Hitachinaka, Ibaraki, Japan
Shigeo Ohashi
Hitachi Ltd., Hitachinaka, Ibaraki, Japan
Paper No:
IPACK2007-33471, pp. 329-334; 6 pages
Published Online:
January 8, 2010
Citation
Horiuchi, K, & Ohashi, S. "Forced-Convection Boiling Characteristics Based on Mass and Energy Conservation." Proceedings of the ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASME 2007 InterPACK Conference, Volume 2. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 329-334. ASME. https://doi.org/10.1115/IPACK2007-33471
Download citation file:
5
Views
Related Articles
Heat Transfer From a Small Heated Region to R-113 and FC-72
J. Heat Transfer (November,1989)
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
J. Heat Transfer (August,2017)
The Influence of Vapor Bubble Sliding on Forced Convection Boiling Heat Transfer
J. Heat Transfer (February,1999)
Related Chapters
Forced Convection Subcooled Boiling
Two-Phase Heat Transfer
Heat Transfer Enhancement by Using Nanofluids in Laminar Forced Convection Flows Considering Variable Properties
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Blowin' in the Wind
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong