Embedded metallic nanoparticles in semiconductors have recently been proven to be of great interest for thermoelectric applications. These metallic nanoparticles play the role of scattering centers for phonons and a source of doping for electrons; they reduce simultaneously the thermal conductivity and increase the thermoelectric power factor of the semiconductor. It has also shown that metal/semiconductor heterostructures can be used to break the crystal momentum symmetry for hot electrons in thermionic devices, then increasing the number of electrons participating in transport. A thermoelectric module of 200 N-P pairs of InGaAlAs with embedded ErAs metallic nanoparticles has been fabricated. Network Identification by Deconvolution (NID) technique is then applied for transient thermal characterization of this thermoelectric module. The combination of this new representation of the dynamic behavior of the packaged device with high resolution thin film temperature measurement allows us to obtain information about heat transfer within the thermoelectric module. This is used to extract the thermal resistances and heat capacitances of the module.

This content is only available via PDF.
You do not currently have access to this content.