An effective semi-empirical method that combines thermal network models and empirical correlations for exploring the thermal performance of heat sinks and HS/TEC assemblies under different external thermal resistances is successfully established. A series of parametric studies, including the effects of external thermal resistance, input current of TEC and pumping heat capacity, on thermal performance improvements of HS/TEC assemblies have been performed. The Response Surface Methodology (RSM) is applied to establish explicit models of the thermal performance of HS/TEC assemblies under various external thermal resistances in terms of the design variables through statistical fitting method. Furthermore, the numerical optimization results for HS/TEC assemblies under different constraints are obtained. With constrained optimal designs of HS/TEC assemblies, the HS/TEC assemblies can provide excellent thermal performance improvements on (1) the reduction of thermal resistance, (2) the enhancement of module heat loads and (3) the improvement of external thermal resistance.

This content is only available via PDF.
You do not currently have access to this content.