Recently, as a result of changes in the automotive industry, a large number of electronic systems have been installed in cars. The thickness of the copper foil used for printed wiring boards (PWBs) has tended to increase in response to the large current capacity required for such electronic equipment. Therefore, the nail head generated in the inner layer copper foil was examined with respect to the influence of the thickness of the copper foil on the through-hole quality. In the present study, the size of the nail head generated in the copper foil after drilling a through hole was used as the objective variable. The explaining variables included drill wear, frequency, feed rate, chip load, drill temperature, copper foil thickness, copper foil cutting distance, and number of drill holes. We investigated the relationships between these explaining variables and the objective variable and found that the copper foil cutting distance was a very important parameter in generating nail heads. In addition, we found that the chip load is important for controlling nail head generation.

This content is only available via PDF.
You do not currently have access to this content.