Natural graphite heat spreaders are in use in electronic cooling applications where heat flux density is low. Natural graphite is an anisotropic material, with a high thermal conductivity in the plane of the spreader combined with a much lower thermal conductivity through its thickness. This low through-thickness thermal conductivity poses a problem when attempting to cool heat sources with relatively high heat flux densities. This problem can be overcome by embedding a thermal via in the graphite material. This via is made from an isotropic material with a thermal conductivity significantly higher than the through-thickness graphite conductivity. This paper examines the thermal performance of a natural graphite heat spreader with an embedded thermal via. The work is primarily experimental although numerical models were used to guide the experiments. The thermal performance of these spreaders is compared to that of spreaders made from conventional isotropic materials. The effect of accelerated aging tests on the performance of these graphite spreaders is reviewed. Finally, two applications are examined; first cooling an ASIC module and second, cooling an FB-DIMM memory card.

This content is only available via PDF.
You do not currently have access to this content.