In liquid-cooled large drives, controlling air temperature and maintaining air circulation is very important to the lifetime and functions of electrical and electronic components in power cell cabinet. In application, air/water heat exchangers and associated fans are employed to cool the air and force it through the cells. A computational fluid dynamics (CFD) analysis is performed to predict the air circulation in cell cabinet. The results are applied in air baffle arrangement to obtain an ideal air flow distribution. A fundamental analysis is conducted for heat exchanger and its thermal performance defined. It is found that the air supply temperature from heat exchanger is almost independent of air flow rate and altitude within application range. A thermal model is developed to simulate air temperatures into and out of cell cabinet heat exchanger for evaluating its cooling capacity. Flow and heat-run tests are performed for a cell cabinet. The testing results prove that the simulation models are accurate, and the developed air-cooling system can satisfy cooling requirement. A parametric study is complemented with the simulation models to guide cooling management regarding variations in operational and environmental conditions.

This content is only available via PDF.
You do not currently have access to this content.