Progress in micromachining technology enabled fabrication of micron-sized mechanical devices, which have had a major impact on many disciplines. These devices have not only led to development of miniature transducers for sensing and actuation, but also a chip-based chemical laboratory (μChemLab) and other microelectromechanical systems (MEMS). Applications of these microscale systems frequently demand heat removal and temperature control. This paper presents preliminary results of a study of heat transfer in microscale systems. Computational modeling is based on Thermal Analysis System (TAS), which facilitates multiscale modeling/simulation, and measurements are made using infrared (IR) microscopy. Representative applications describe multiscale modeling and measurement results obtained for a microhotplate of a μChemLab and a high-power GaAs FET amplifier. Comparison of the preliminary experimental/measurement and computational/modeling results shows good correlation.

This content is only available via PDF.
You do not currently have access to this content.