This paper discusses the concept of synthetic jet ejectors for forced air cooling and some practical implementations of the same. Synthetic or “zero-mass-flux” jets, unlike conventional jets, require no mass addition to the system, and thus provide means of efficiently directing airflow across a heated surface. Because these jets are zero net mass flux in nature and are comprised entirely of the ambient fluid, they can be conveniently integrated with the surfaces that require cooling without the need for complex plumbing. A synthetic jet ejector mechanism for obtaining high heat transfer rates at low flow rates is discussed. Synthetic jet ejectors consist of a primary “zero-mass-flux” unsteady jet driving a secondary airflow through a channel. Several practical implementations of synthetic jets are introduced from low form factor, low power spot cooling applications to high heat dissipation applications and flow bypass control where synthetic jets are used to enhance fan performance.

This content is only available via PDF.
You do not currently have access to this content.