With an increase in the number of transistors (higher power), shrinking processor size (smaller die), and increasing clock speeds (higher frequency) for next generation microprocessors, heat dissipation at the silicon die level has become a critical focus area for microprocessor architecture and design. In addition, power removal at low cost continues to remain the key challenge as we develop the next generation packaging technologies. Novel Thermal Interface Materials (TIM) are required to be designed and developed to meet these new package thermal targets. This paper presents an overview of the novel TIM technologies developed at Intel including greases, phase change materials (PCM), gels, polymer solder hybrids, and solder TIM for multiple generations of desktop, server and mobile microprocessors. The advantages and limitations of these TIM technologies in the thermal management of flip chip packaging are reviewed for Intel’s microprocessors.

This content is only available via PDF.
You do not currently have access to this content.