A numerical investigation was performed at two Reynolds numbers to analyze the flow-field and heat transfer characteristics for a pair of laminar jets impinging on opposite walls in a channel. The present study is a continuation of the authors’ earlier work [1] in which the jets flowing out normal to the top channel wall produce a large stagnant bubble between the two jets which greatly reduce the heat transfer removal from the lower wall. In this case, the lower Reynolds number jet flow of 300 produces a symmetric, steady flow hydrodynamic pattern with the jets being deflected laterally. By further increasing the Reynolds number to 750, a complex asymmetric and highly unsteady flow develops between the two jets due to the opposite jet flow interaction. The convective heat transfer coefficients and the unsteady flow development between the jets are studied for each case. The flow unsteadiness is also characterized by analyzing the stagnation point displacement on the channel walls. The complex vortex patterns resulting from the jet interaction at the higher Reynolds number is investigated and its impact on the chip/microelectronics component cooling is thoroughly documented.   This paper was also originally published as part of the Proceedings of the ASME 2005 Heat Transfer Summer Conference.

This content is only available via PDF.
You do not currently have access to this content.