Two-phase loops are extremely efficient devices for passively transporting heat over long distances with low temperature drop. The heat acquisition component of a two-phase loop, the evaporator, is commonly made from conventional metal materials (aluminum, copper, etc.) and has cylindrical geometry. Neither characteristic is optimally suited for close integration to common electronic or photonic heat sources, which generally have flat interfaces and are constructed from low thermal expansion coefficient (CTE) semiconductor materials. This paper describes the development of a ceramic flat plate evaporator for cooling processor chips in network computers used onboard Navy submarines. The unique requirements of submarines give added motivation for the advantages offered by two-phase loops. The ceramic flat plate evaporator is constructed of low CTE, high thermal conductivity material and thus enables a low thermal resistance interface between the heat source and the working fluid of the loop heat pipe. Alumina and aluminum nitride flat plate evaporators were integrated into a water-based two-phase loop and thermally tested to a heat flux of 30 W/cm2.

This content is only available via PDF.
You do not currently have access to this content.