We report on the development of a new micro-electro-mechanical systems (MEMS) optimal design method called MEMS Early-Stage Analysis (MESA), which supports the total system evaluation of MEMS devices before the design stage. Recently total system simulation and design using Computer Aided Engineering (CAE) analyses have become important in MEMS device development due to their fabrication and design complexity. Although a lot of CAE methods that can be applied to MEMS have been demonstrated, time-consuming trial-and-error processes are inevitable at the design stage in order to obtain an optimal structure. In our design method, we can clarify and simplify the relation between design parameters and the system characteristics using a MESA weighted orthogonal array. In the MESA array, the sensitivity of each design factor for the system performance shows numerically how the design parameter influences the system characteristics. The existent trade-offs between design parameters can be minimized by both modifying the design concept and adjusting the sensitivities. Therefore MEMS designers are able to optimize the total system based on the information from the MESA array. Moreover, particular system characteristics can be enhanced in order to meet the system requirement through the adjustment of weight values for the sensitivities. The MESA makes the evaluation of system validity possible at the concept design stage. To conduct the informative optimal design method at the beginning of development leads the reduction of the total MEMS design time and cost.

This content is only available via PDF.
You do not currently have access to this content.