In this study, we demonstrate a simple, full field displacement characterization technique based on digital image correlation (DIC). We develop a robust correlation measure implemented in a code and use it to characterize materials at high spatial and displacement resolution. We describe the methods implemented in the DIC code and compare against those available in the literature. We show how sample preparation may be entirely eliminated by using the natural speckle inherent in specular (rough) surfaces. We demonstrate further that the use of natural speckle enables very high spatial resolution (100 microns or less) since creating artificial speckle patterns in miscroscale spatial regions is a significant challenge. The software is also designed to be robust to varying contrasts between the deformed and the undeformed images. Its accuracy is enhanced by using NURBS (Non-Uniform Rational B-Spline) as the interpolating function in the code. We demonstrate the developed software and the underlying procedure on several packaging problems of interest. We measure the CTE of Alumina (Al2O3) using its natural speckle, we calculate the strain and therefore the modulus during mechanical testing of composite materials and we characterize the time dependent behavior of a micro-fiber reinforced composite (RT/Duroid) at high temperature.

This content is only available via PDF.
You do not currently have access to this content.