As the electronics industry continues to push for miniaturization, several reliability factors become vital issues. The demand for a high population of smaller and smaller solder bumps, while also increasing the current, have resulted in a significant increase in the current density. As outlined in the International Technology of Roadmap for Semiconductors (ITRS), this trend makes electromigration the limiting factor in high density packages. The heightened current density and correspondingly elevated operating temperatures are a critical issue in reliability since these factors facilitate the effects of electromigration. Therefore, as bump sizes continue to decrease, the study of electromigration reliability becomes crucial in order to understand and possibly prevent the causes of failure. A systematic study of electromigration in eutectic SnPb and Pb-free solder bumps was conducted in order to characterize the reliability of the Micro SMD package family. The testing includes both eutectic 63Sn-37Pb and 95.5Sn4.0Ag-0.5Cu solder bumps on an Al/Ni(V)/Cu under-bump-metallization. Mean-time-to-failure results are compared to Black’s Equation and cross-sections of the solder bumps are shown to analyze the mechanisms that led to failure.

This content is only available via PDF.
You do not currently have access to this content.