Since the VLSI processors are increasing power in accordance with exponential law, cooling solutions for such as personal computers have been evolving for over a decade. Recent heat sinks are designed with high dense fins and low profile to adapt to a high heat flux source within a slim enclosure. To achieve such compact cooling solution, thin fin and small gap is desirable. In addition, the pumping power is also limited by the allowable narrow space for fans. Thus it is important to minimize the thermal resistance for given pumping power that we define the optimum. Due to the lack of literatures on topic of low profile and high dense fins experiments, an apparatus was specially built to measure the thermal and fluid dynamic performance at the same time. Since such a high dense fin arrangement requires extra space on the sides by manufacturing reasons, the impact of bypass flow needs to be considered. The experiments are carefully carried out and the results are precisely compared with numerical analysis. The numerical model aiming to find the optimum for given pumping power is discussed with extrapolating the data points. This report is concluded with the best configuration of plate fins of low profile heat sinks for a given fan performance.

This content is only available via PDF.
You do not currently have access to this content.