Recently, adhesively bonding techniques such as the anisotropic conductive film (ACF) or the non-conductive adhesive resin are often used for connections in the chip size packages instead of conventional solder joints due to their reasonable cost and the ease of miniaturization. Adhesively bonding techniques expected to be a key technology for the chip size packaging and the system in package. However, the level of reliability for adhesively bonding techniques is still less than that for solder joints. The quantitative evaluation techniques for the reliability of adhesively bonding techniques are desired. This paper focused on the reliability of adhesively bonding joints in a flip chip package during the solder reflow process for other solder jointed devices. This paper presents a methodology for quantitative evaluation of the delamination in a flip chip interconnected by an ACF under moisture/reflow sensitivity tests. The delamination toughnesses between components in a flip chip based on the stress intensity factors were measured by fracture tests in conjunction with the numerical analysis developed in our previous study. Moisture concentration after moisture absorption was expected by the diffusion analysis using the finite element method. Then, vapor pressure in a flip chip during the solder reflow process was estimated. Finally the delamination was predicted by comparing the stress intensity factor of an interface crack due to vapor pressure with the delamination toughness. The delaminations in an actual flip chip package during moisture/reflow sensitivity tests have successfully predicted by the present methodology.

This content is only available via PDF.
You do not currently have access to this content.