Local residual stress at a surface of a silicon chip mounted on a substrate using flip chip technology was measured using a stress sensor chip that was composed of 168 strain gauges of 10-μm in length. Each strain gauge was made of polycrystalline silicon films deposited on a silicon wafer. The periodic stress distribution was measured at a surface of the sensor chip between two bumps. Five gauges were aligned at a interval of 20-μm between the bumps. When the thickness of the chip was less than 200 μm, the amplitude of the stress increased drastically, as was predicted by a finite element analysis. The amplitude of the stress reached about 150 MPa, when the thickness of the chip was thinned to 50 μm. The amplitude of the stress is a strong function of the thickness of a silicon chip and the intervals of the bumps.

This content is only available via PDF.
You do not currently have access to this content.