Effective cooling of electronic chips is crucial for reliability and performance of electronic devices. Steadily increasing power dissipation in both devices and interconnects motivate the investigation of chip-centric thermal management as opposed to traditional package-centric solutions. In this work, we explore the fundamental limits for heat removal from a model chip for various configurations. Temperature rise when the chip is embedded in an infinite solid is computed for different thermal conductivities of the medium to pin down the best that can be achieved with conduction based thermal management. Next, a chip attached to a spreader plate with convection boundary condition on top was considered. A brief review of interface thermal resistances and partitioning of overall thermal resistance is presented for current generation microprocessors. Based upon the analysis it is concluded that far-term cooling solutions might necessitate integration with chip/interconnect-stack to meet the challenges. In addition, this would require concurrent thermal and electrical design/fabrication of future high-performance microprocessors.

This content is only available via PDF.
You do not currently have access to this content.