Thermal management of modern electronics has become a problem of significant interest due to the demand for power and reduction in packaging size. Requirements of next-generation microprocessors in terms of power dissipation and heat flux will certainly outgrow the capability of today’s thermal control technology. LHPs, like conventional heat pipes, are capillary pumped heat transport devices. They contain no mechanical moving part to wear out or require electrical power to operate. But unlike heat pipes, LHPs possess much higher heat transport capabilities enabling them to transport large amounts of heat over long distances in small flexible lines for heat rejection. In fact, a miniature ammonia LHP developed for a NASA space program is capable of transporting 60W over a distance of 1 meter in 1/16”O.D. stainless steel tubing. Therefore, miniature LHPs using water as the working fluid are excellent candidates to replace heat pipes as heat transports in electronic cooling systems. However, a number of operational issues regarding system performance, cost, and integration/packaging must be resolved before water LHPs can become a viable option for commercial electronics.

This content is only available via PDF.
You do not currently have access to this content.