This paper reports on indirect cooling of high-power IC chips of notebook computers using a two phase closed thermosyphon loop with Fluorinert (FC-72) as the working fluid. The experimental set-up consists of an evaporator and a condenser connected by flexible tubing. The evaporator corresponds to a high-power IC chip, and the condenser represents a cooling plate located behind the display of notebook computer. The evaporator and the condenser have the outer dimensions of 50mm × 50mm × 20mm and 150mm × 200mm × 20mm, respectively. The effects of the heat input Q and the charged volume of Fluorinert liquid F on the heat transfer characteristics of the cooling system were studied experimentally. Further, the experiment for the evaporator with plate fin to enhance the boiling in the evaporator was carried out. It has been confirmed that the heater surface temperature for the evaporator with plate fin reduces about 10% in comparison with those for the evaporator without fin. It is found that enhancing the boiling in the evaporator is very effective to reduce the surface temperature of heater. In the case of the evaporator with the plate fin, the temperature difference between the heater surface and ambient is kept around 60K for the highest heat input Q = 30W in the present experiments.

This content is only available via PDF.
You do not currently have access to this content.