This paper presents a physics based analytical model to predict the thermal behavior of pin fin heat sinks in transverse forced flow. The key feature of the model is the recognition that unlike plate fins, streamwise conduction does not occur in pin fin heat sinks. Thus, the heat transfer from each fin depends on its local air temperature or adiabatic temperature and the local adiabatic heat transfer coefficient. Both experimental data and simplified CFD simulations are used to develop the two building blocks of the model, the thermal wake function and the adiabatic heat transfer coefficient. These building blocks are then used to include the effect of the thermal wake from upstream fins on the adiabatic temperature of downstream fins in determining the fin-by-fin heat transfer within the pin fin array. This approach captures the essential physics of the flow and heat transport within the fin array and yields an accurate model for predicting the thermal resistance of pin fin heat sinks. Model predictions are compared with existing experimental data and CFD simulations. The model is expected to provide a sound basis for a consistent performance comparison with plate fin heat sinks.

This content is only available via PDF.
You do not currently have access to this content.