This paper explores the novel technique of forced synthetic jet cooling within high-aspect ratio ducts that can be accommodated within low-profile electronic systems. A synthetic jet is an intense, small-scale turbulent jet that is synthesized directly from the fluid in the system in which it is embedded and is formed when fluid is alternately sucked and ejected from the cavity by the motion of a diaphragm bounding the cavity, so that there is no net mass addition to the system. This feature obviates the need for input piping or complex fluidic packaging and makes synthetic jets ideally suited for the low-profile geometries of portables. In the current work, a simple configuration of a 2-D synthetic jet ejector in a rectangular channel is used to ascertain the flow and thermal performance curves, overall thermal resistance and effectiveness for the synthetic jet ejector channel flow.

This content is only available via PDF.
You do not currently have access to this content.