Thermomechanical, power temperature cycling (PTC) and vibration analyses were performed on a 313 staggered pin PBGA package using plastic and viscoplastic disturbed-state damage models. An accelerated finite element failure analysis was performed using a newly developed procedure. Validations were performed using published PBGA test data. The disturbed state concept was used to model the disturbance (damage) accumulated in PBGA solder joints subjected to thermal cycling (PTC and TCT), vibration, and vibration coupled with three distinct temperatures. 2D FEA plastic and viscoplastic models were created based on a diagonal “slice” of the PBGA. This allowed the most critical solder balls (under the die and furthest DNP) to be analyzed in the same model. The thermal cycling results indicate that the solder balls under the die are the most likely to fail. The vibration results indicate the solder balls furthest from the package center are most likely to fail. The vibration results, coupled with distinct isothermal temperatures, indicate that as temperature increases, the cycles to failure decreases.

This content is only available via PDF.
You do not currently have access to this content.