Double data rate (DDR) signaling is widely used in electrical interconnects to eliminate clock recovery and to double communication bandwidth. This paper describes the design of a parallel optical transceiver integrated circuit (IC) that uses source-synchronous, DDR optical signaling. On the transmit side, two 8-bit electrical inputs are multiplexed, encoded and sent over two high-speed optical links. On the receive side, the procedure is reversed to produce two 8-bit electrical outputs. Our IC integrates analog Vertical Cavity Surface Emitting Lasers (VCSEL), drivers and optical receivers with digital DDR multiplexing, serialization, and deserializaton circuits. It was fabricated in a 0.5-micron Silicon-on-Sapphire (SOS) CMOS process. Linear arrays of quad VCSELs and photodetectors were attached to our transceiver IC using flip-chip bonding. A free-space optical link system was constructed to demonstrate correct IC functionality. The test results show successful transceiver operation at a data rate of 500 Mbps with a 250 MHz DDR clock, achieving a gigabit of aggregate bandwidth. While our DDR scheme is well suited for low-skew fiber-ribbon, free-space and waveguide optical links, it can also be extended to links with higher skew with the addition of skew-compensation circuitry. To our knowledge, this is the first demonstration of parallel optical transceivers that use source-synchronous DDR signaling.

This content is only available via PDF.
You do not currently have access to this content.