Heat assisted magnetic recording (HAMR) is a promising technology for the next generation hard disk drives (HDDs). Understanding the heat transfer at nanoscales and implementing a proper thermal management scheme become very critical as a few heat sources and energy delivery components are compactly integrated in a HAMR drive. Recently, a back-heating experimental setup is used to study heat transfer behavior. It is found that the detection of head disk contact and head disk spacing control become more complicated in this experimental setup because the local heating generates a protrusion on the media surface. In this paper, we demonstrate a method to enhance the contact detection sensitivity significantly by modulating the head disk spacing. It shows that a light contact between the head TFC protrusion and media protrusion can be effectively detected. Thereafter, the media protrusion can be measured and the head disk spacing can be well set.

This content is only available via PDF.
You do not currently have access to this content.