According to the shortages of previous generation of frog inspired robot, antagonistic joint based frog inspired leg was designed. With the multi-DOFs of hip, knee and ankle, the designed leg was able to perform various frog swimming modes. The dynamic model of antagonistic joint based on advanced pneumatic muscle model was established in MATLAB/Simulink environment. Besides, the servo control strategy of joint angle was studied based on the dynamic model of antagonistic joint. The PID and self-tuning fuzzy control were utilized to control the antagonistic joint. According to different swimming modes, joint trajectories of hip, knee and ankle were created by inverse kinematics based on the frog swimming mechanism. Therefore, the leg was controlled by the separated controls of hip, knee and ankle joints. Feasibility of pneumatic antagonistic joint control was validated via step response experiments with different loads. Finally, the experiment platform was established to carry swimming experiments with the developed frog-inspired swimming leg. The feasibility of antagonistic frog inspired swimming leg driven by pneumatic muscles was validated.

This content is only available via PDF.
You do not currently have access to this content.