A List–Viterbi detector produces a rank ordered list of the N globally best candidates in a trellis search. A List–Viterbi detector structure is proposed that incorporates the noise prediction with periodic state-metric updates based on outer error detection codes (EDCs). More specifically, a periodic decision making process is utilized for a non-overlapping sliding windows of P bits based on the use of outer EDCs. In a number of magnetic recording applications, Error Correction Coding (ECC) is adversely effected by the presence of long and dominant error events. Unlike the conventional post processing methods that are usually tailored to a specific set of dominant error events or the joint modulation code trellis architectures that are operating on larger state spaces at the expense of increased implementation complexity, the proposed detector does not use any a priori information about the error event distributions and operates at reduced state trellis. We present pre-ECC bit error rate performance as well as the post-ECC codeword failure rates of the proposed detector using perfect detection scenario as well as practical detection codes as the EDCs are not essential to the overall design. Furthermore, it is observed that proposed algorithm does not introduce new error events. Simulation results show that the proposed algorithm gives improved bit error and post-ECC codeword failure rates at the expense of some increase in complexity.

This content is only available via PDF.
You do not currently have access to this content.