A pump-probe experimental technique that incorporated a 527nm wavelength pump laser and a 476nm probe laser was applied to a magnetic storage disk having a magnetic layer comprised of a FePt alloy and coated with a hydrogenated carbon overcoat (COC). The pump laser power was systematically increased while sweeping the applied field with an electromagnet to observe the temperature dependent magnetization, which is proportional to the change in the polarization of the reflected beam. In this way the laser power required to heat the media to the Curie temperature (Tc) was determined, with the Curie temperature of the media determined from a separate magnetometry measurement. Such a single point laser power-to-media temperature calibration allowed the determination of the media temperature over a small laser power range near Tc. The carbon over-coated FePt media was then irradiated for varying durations at temperatures pertinent to a Heat Assisted Magnetic Recording (HAMR) device [1]. The COC surface topography and carbon bonding structure within each irradiated zone was probed with AFM and micro-spot Raman. A subtle, systematic temperature and duration dependent change in the COC was observed. With increasing temperature and duration, the Raman D-peak became increasingly pronounced, signaling an increase of the sp2 (disorder) content in the film in the irradiated region. At incrementally higher temperatures, the loss of the carbon overcoat becomes apparent as a shallow depression in the COC film in the irradiated area. A clearer picture of the possible sensitivity and kinetics of the loss of COC on the HAMR media surface was obtained by measuring its loss over a range of irradiation temperatures and durations. The activation energy and COC loss rate were obtained and a possible mechanism for COC failure-loss was discussed within the bounds of the operating HAMR device [2].

This content is only available via PDF.
You do not currently have access to this content.