In order to meet the demand to increase the areal density of magnetic recording, promising technologies such as heat-assisted magnetic recording (HAMR) are being extensively pursued [1–3]. However, the high transient disk temperature (400–500 °C, nanosecond time scale) required by this recording scheme might dramatically affect the reliability of the head-disk interface. Possible issues include overcoat oxidation and graphitization, both on head and disk, as well as lubricant evaporation, thermodiffusion, and decomposition. Although modeling and experimental studies have been published describing the lubricant film evaporation under thermal exposure, very few studies have been directed toward understanding the mechanisms of lubricant decomposition [4–7].

This content is only available via PDF.
You do not currently have access to this content.