Abstract
In a modern large-scale fabrication, hundreds of vehicles are used for transportation. Since traffic conditions are changing rapidly, the routing of automated guided vehicles (AGV) needs to be changed according to the change in traffic conditions. We propose a conflict-free routing method for AGVs using reinforcement learning in dynamic transportation. An advantage of the proposed method is that a change in the state can be obtained as an evaluation function. Therefore, the action can be selected according to the states. A deadlock avoidance method in bidirectional transport systems is developed using reinforcement learning. The effectiveness of the proposed method is demonstrated by comparing the performance with the conventional Q learning algorithm from computational results.