Motion error of machine tool feed axes influences the machined workpiece accuracy. However, the influences of each error sources are not identical; some errors do not influence the machined surface although some error have significant influences. In addition, five-axis machine tools have more error source than conventional three-axis machine tools, and it is very tough to predict the geometric errors of the machined surface. This study proposes a method to analyze the relationships between the each error sources and the error of the machined surface. In this study, a kind of sphere-shaped workpiece is taken as a sample to explain how the sensitivity analysis makes sense in ball-end milling. The results show that the method can be applied for the axial errors, such as motion reversal errors, to make it clearer to obverse the extent of each errors. In addition, the results also show that the presented sensitivity analysis is useful to investigate that how the geometric errors influence the sphere surface accuracy. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.

This content is only available via PDF.
You do not currently have access to this content.